9,431 research outputs found

    Stacking dependence of carrier transport properties in multilayered black phosphorous

    Full text link
    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with Generalized Gradient Approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the Meta-Generalized Gradient Approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium Greens function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gap, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.Comment: 18 Pages , 10 figure

    Entanglement production due to quench dynamics of an anisotropic XY chain in a transverse field

    Get PDF
    We compute concurrence and negativity as measures of two-site entanglement generated by a power-law quench (characterized by a rate 1/tau and an exponent alpha) which takes an anisotropic XY chain in a transverse field through a quantum critical point (QCP). We show that only the even-neighbor pairs of sites get entangled in such a process. Moreover, there is a critical rate of quench, 1/tau_c, above which no two-site entanglement is generated; the entire entanglement is multipartite. The ratio of the two-site entanglements between consecutive even neighbors can be tuned by changing the quench rate. We also show that for large tau, the concurrence (negativity) scales as sqrt{alpha/tau} (alpha/tau), and we relate this scaling behavior to defect production by the quench through a QCP.Comment: 5 pages including 4 figures; added a figure on multipartite entanglement and some references -- this is the published versio

    Probing Disordered Substrates by Imaging the Adsorbate in its Fluid Phase

    Get PDF
    Several recent imaging experiments access the equilibrium density profiles of interacting particles confined to a two-dimensional substrate. When these particles are in a fluid phase, we show that such data yields precise information regarding substrate disorder as reflected in one-point functions and two-point correlations of the fluid. Using Monte Carlo simulations and replica generalizations of liquid state theories, we extract unusual two-point correlations of time-averaged density inhomogeneities induced by disorder. Distribution functions such as these have not hitherto been measured but should be experimentally accessible.Comment: 10 pages revtex 4 figure

    S-Matrix Formulation of Mesoscopic Systems and Evanescent Modes

    Full text link
    The Landauer-Butikker formalism is an important formalism to study mesoscopic systems. Its validity for linear transport is well established theoretically as well as experimentally. Akkermans et al [Phys. Rev. Lett. {\bf 66}, 76 (1991)] had shown that the formalism can be extended to study thermodynamic properties like persistent currents. It was earlier verified for simple one dimensional systems. We study this formula very carefully and conclude that it requires reinterpretation in quasi one dimension. This is essentially because of the presence of evanescent modes in quasi one dimension.Comment: non

    Strong Coupling Theory for Interacting Lattice Models

    Full text link
    We develop a strong coupling approach for a general lattice problem. We argue that this strong coupling perspective represents the natural framework for a generalization of the dynamical mean field theory (DMFT). The main result of this analysis is twofold: 1) It provides the tools for a unified treatment of any non-local contribution to the Hamiltonian. Within our scheme, non-local terms such as hopping terms, spin-spin interactions, or non-local Coulomb interactions are treated on equal footing. 2) By performing a detailed strong-coupling analysis of a generalized lattice problem, we establish the basis for possible clean and systematic extensions beyond DMFT. To this end, we study the problem using three different perspectives. First, we develop a generalized expansion around the atomic limit in terms of the coupling constants for the non-local contributions to the Hamiltonian. By analyzing the diagrammatics associated with this expansion, we establish the equations for a generalized dynamical mean-field theory (G-DMFT). Second, we formulate the theory in terms of a generalized strong coupling version of the Baym-Kadanoff functional. Third, following Pairault, Senechal, and Tremblay, we present our scheme in the language of a perturbation theory for canonical fermionic and bosonic fields and we establish the interpretation of various strong coupling quantities within a standard perturbative picture.Comment: Revised Version, 17 pages, 5 figure

    Superfluid-insulator transitions of two-species Bosons in an optical lattice

    Get PDF
    We consider a realization of the two-species bosonic Hubbard model with variable interspecies interaction and hopping strength. We analyze the superfluid-insulator (SI) transition for the relevant parameter regimes and compute the ground state phase diagram for odd filling at commensurate densities. We find that in contrast to the even commensurate filling case, the superfluid-insulator transition occurs with (a) simultaneous onset of superfluidity of both species or (b) coexistence of Mott insulating state of one species and superfluidity of the other or, in the case of unit filling, (c) complete depopulation of one species. The superfluid-insulator transition can be first order in a large region of the phase diagram. We develop a variational mean-field method which takes into account the effect of second order quantum fluctuations on the superfluid-insulator transition and corroborate the mean-field phase diagram using a quantum Monte Carlo study.Comment: 12 pages, 11 figure

    Quantum glass phases in the disordered Bose-Hubbard model

    Full text link
    The phase diagram of the Bose-Hubbard model in the presence of off-diagonal disorder is determined using Quantum Monte Carlo simulations. A sequence of quantum glass phases intervene at the interface between the Mott insulating and the Superfluid phases of the clean system. In addition to the standard Bose glass phase, the coexistence of gapless and gapped regions close to the Mott insulating phase leads to a novel Mott glass regime which is incompressible yet gapless. Numerical evidence for the properties of these phases is given in terms of global (compressibility, superfluid stiffness) and local (compressibility, momentum distribution) observables
    corecore